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Abstract—A model of normal vessel behaviours is useful for
detecting illegal, suspicious, or unsafe behaviour; such as vessel
theft, drugs smuggling, people trafficking or poor sailing. This
work presents a data-driven non-parametric Bayesian model,
based on Gaussian Processes, to model normal shipping be-
haviour. This model is learned from Automatic Identification
System (AIS) data and uses an Active Learning paradigm to select
an informative subsample of the data to reduce the computational
complexity of training. The resultant model allows a measure of
normality to be calculated for each newly-observed transmission
according to its velocity given its current latitude and longitude.
Using this measure of normality, ships can be identified as
potentially anomalous and prioritised for further investigation.

The model performance is assessed by its ability to detect
artificially generated AIS anomalies at locations around the
United Kingdom. Finally, the model is demonstrated on case
studies from artificial and real vessel data to detect anomalies in
unusual tracks.

I. INTRODUCTION

A wealth of information on vessel behaviour has become
available due to the compulsory use of the Automated Iden-
tification System (AIS) for most international voyaging and
passenger ships. AIS messages are transmitted from vessels
reporting their position, speed, heading, and other details, such
as their destination and ship identifier. Although the main
purpose of the self-reporting AIS system is safety in navigation
and collision avoidance, it is also an abundant source of
data for maritime surveillance. Surveillance authorities are
interested in using this data to uncover threats to security
and illegal activities. A lot of current research is aimed at
determining the best way to exploit this wealth of AIS data, in
order to improve situation awareness in the maritime domain.
The main research goal is to be able to identify anomalies.

Detecting anomalous behaviour is important as it can be in-
dicative of nefarious activities, such as piracy, drug smuggling,
arms trading, people trafficking and illegal immigration. In
some cases, anomalous behaviour could pose a safety risk. The
large numbers of vessels on the seas makes inspecting vessel
tracks for anomalous behaviour time consuming and error
prone for human analysts. Furthermore, with more satellite-
based Automatic Identification System (AIS) receivers coming
online (as reported in [1]), the amount of data will only
increase. Automated tools are essential to reduce the cognitive
workload of the analysts.

This requires development of a model representing normal
vessel behaviour. The model can be then used to identify
anomalous behaviour by vessel’s deviation from normality.
One of two routes can be taken for automatically detecting
anomalous behaviour: a top-down approach, which requires
the explicit definition of models a priory; and a bottom-up
approach, which builds models of normal behaviour from
data. Top-down approaches usually involve the codification
of behaviours by Subject Matter Experts (SMEs) based on
their experience and domain knowledge. For instance, [1] ran
a workshop with SMEs to elicit abnormal behaviours that were
codified as rules. [2] represented that expert knowledge as an
ontology and developed a system to perform reasoning using
Description Logics to classify vessels of interest and detect
anomalies. A fuzzy expert system introduced by Jasinevicius
and Petrauskas [3] that takes into account the vessel type,
persons on board and the riskiness of the cargo when detecting
abnormal behaviour. Other examples are Bayesian networks
[4], [5], which rely on conditional probabilities as a measure
of normality. If probability of an event, such as a vessel’s
track, falls below a chosen threshold, it is flagged as abnormal.
Although Bayesian networks can be easily understood and
validated due to their representation of causal relationships,
they require characterization a priori of all network variables
and edges, which is usually a very challenging task. On top
of that, once the network complexity is fixed, its expressive
power is limited by the initial network structure, so it does
not deal with data that changes over time very well. It is a
common issue of top-down approaches.

The fact that there is a large amount of AIS data avail-
able, corresponding to routine behaviour, motivates the use
of bottom-up techniques for building models of normal be-
haviour. For example, adaptive kernel density estimation is
used in [6] to model normal vessel tracks. Vessels in regions
of low density are flagged as anomalies. A clear advantage
of the method is that there is no need to specify a model
or any parameters a priori. [7] developed a prototype system
to detect unsafe, illegal and threatening vessel activity that
learns from operator-labelled track reports and their responses
to automatically generated alerts. A modified Fuzzy ARTMAP
neural network classifier is employed to learn models of vessel
behaviour. Longitude, latitude, speed and course are input to



the system and the classes employed are normal, anomalous
and unknown. [8] detected suspicious or anomalous behaviour
by dividing the tracks into “motifs” (such as straight line, u-
turn or loop) and examples of anomalous behaviour are used
to train the classifier. [9] took a Bayesian network approach
where a model of normal vessel behaviour was learnt and
anomalies were then detected by the system by comparing
the data to the model. Other bottom-up techniques use an
unsupervised learning approach, such as work by Rhodes,
Bomberger et al. using artificial neural networks [10], or the
work by Laxhammar [11], where Gaussian Mixture Model is
used as cluster model and a greedy version of the Expectation-
Maximization algorithm as clustering algorithm. Although
Gaussian Mixture Model allows learning from multimodal
data, i.e. more than one normal behaviour in one position,
finding an optimal number of mixture components is not
trivial and is prone to over-fitting. Moreover, applying Gaus-
sian Mixture Model to all possible locations would be too
computationally expensive, so it requires placing a uniform
grid over the area of interest and then dealing with each
square separately. That imposes an artificial discretization of
otherwise continuous positions and might not reflect real data
clusters very well. The problem of position discretization also
exists in [12], where associative neural networks are used to
learn normal vessel behaviour and detect anomalies. Most of
the methods previously introduced focus on modelling normal
ship ”tracks”. Although this allows detection of anomalous
behaviour embodied by the track as a whole, it cannot be
easily used in real-time surveillance. An alternative approach
considers ship behaviour independent of time.

In this work, a model of normality is created from historical
AIS data using Gaussian Processes (GPs), thus codified expert
knowledge is not required. An advantage with GPs is that the
model is non parametric so it is not necessary to build in
features of anomalous behaviour. A limitation of this approach
is that although GPs provide a flexible and robust approach to
anomaly detection, they are not typically suitable for large
datasets due to high computational complexity in training
(O(n3)) and prediction (O(n)), where n is the number of
samples in the training set.

This limitation is addressed by Active Learning, which
allows selection of an optimal training sample from AIS data.
The sample accurately represents the entire set but is relatively
small. It is an alternative approach to our previous work [13],
where computational complexity of GPs was minimized by a
Kd-Tree approximation for training and prediction. The two
methods could potentially be used together, although it was
not done so in this paper.

II. APPROACH

A. Data Preprocessing

AIS data from six weeks starting on January 16th 2011
was used, which provides information on each vessel’s type t,
position x (latitude, longitude) and velocity y (speed, heading)
along the English Coastline. As Gaussian Processes are being
used, the behaviours modelled are required to be unimodal,

Fig. 1. Conversion from polar to Cartesian coordinate system

i.e. one normal behaviour in one position. However, different
vessel types tend to have different “normal” behaviours. For
example, while heading towards a fishing zone is normal for
a fishing boat, it should be flagged as anomaly for a tug boat.
Another example would be that low speed is normal for a
cargo ships but not for speed vessels. Therefore, the first step
in the reduction of data modality is the separation of AIS data
according to vessel types. As a result, for each vessel type
t, speed usually becomes unimodal, heading, however, tends
to be at least bimodal. This is because at a given position x,
vessels tend to move in two opposite directions along the same
shipping lane. Therefore, to create unimodal heading data, we
restrict heading values to (0, 180) range:

heading = mod(heading, 180). (1)

This approach expects only one shipping lane in one po-
sition. If more shipping lanes were to be considered in one
position, the method would require data clustering, e.g. a
mixture of Gaussian processes [14], but it is outside the scope
of this work. At this stage, we deal with unimodal y data with
two components: speed, which is a scalar measurement, and
heading, which is an angle in the range (0, 180). These two
measurements define a vessel’s velocity in a Polar coordinate
system. A possible approach to model vessel behaviour would
be to use two GPs: one to model speed and the other to model
heading. However, heading contains a discontinuity, which
needs to be carefully considered for a GP regression model.
The approach in this work is to convert velocity to Cartesian
coordinate system, as shown in Figure 1.

Following the conversion a discontinuity still remains.
Specifically, the values of yj velocity component approach
opposite values in the limits of the heading range, which could
negatively affect the accuracy of GP regression. Therefore, to
resolve the issue, we use absolute values of yj only.



Fig. 2. The velocity vectors of the vessels are pre-processed to lie only in
the quadrant indicated.

yj = abs(speed cos(heading)) (2)

As a result of constraints introduced in (1) and (2), we deal
with velocities in the first quadrant of the Cartesian plane only
(Figure 2). The behaviour data y is now expressed in terms of
yi and yj velocity components.

B. Gaussian Processes

GP regression models are constructed using training data
D = {y, x}1,...,n for the prediction of velocity y∗ at a
new unseen position x∗. The prediction of y∗ is achieved
through the construction of two separate GPs to predict y∗i
and y∗j velocity components, as described in Section II-A,
for each ship type. There are 16 ship types in the AIS
database, therefore, there are 32 GP regression models. After
the training, the GP models are capable of predicting y∗i and
y∗j velocity components for an unseen position x∗. Gaussian
Process is specified by its mean function m(x) and covariance
function K(x, x′). The prior mean is set to zero. Therefore,
before the training step, we expect zero velocity everywhere.
What relates one observation to another is the covariance
function. Our choice is the “squared exponential” stationary
covariance function:

K(x, x′) = σ2
f exp

[
−(x− x′)2

2l2

]
(3)

where σ2
f is the signal variance and l is the characteristic length

scale which tells us how much separation of x and x′ affects
their covariance. The length scale has the empirical effect of
affecting the smoothness of the predictive function.

After applying the covariance function to the training set,
velocity in regions with no vessel activity (in the training
sample) will be characterized by zero posterior mean (equal
to prior) and high variance. Therefore, any vessel behaviour
in these regions will be seen as unusual and flagged as an
anomaly, irrespective of their velocity. It allows detection of
anomalous vessels, which venture outside established shipping

tracks. Each reading y∗ can be thought of as a noisy output of
an underlying function f(x∗) (refered to hereinafter using the
shorthand f∗) which is inferred from the posterior distribution:

p(f∗|x∗, D) ∼ N (f̄∗,V(f∗)) (4)

where the mean and variance are defined as:

f̄∗ = k∗TM−1y (5)

V(f∗) = K(x∗, x∗)− k∗TM−1k∗ (6)

where

M = (K + σ2
NI), (7)

k∗ = [K(x∗, x1), ...,K(x∗, xn)]T , (8)

and σ2
N is the noise variance. The value of y∗ differs from the

underlying value f∗ by additive noise. The noise is assumed
to be an independently and identically distributed Gaussian
distribution with zero mean and variance (also referred to as
the likelihood parameter),

y = f(x) +N(0, σ2
N ) (9)

We do not know a priori the values of the covariance
and likelihood hyperparameters, so they are first initialized
to random values and then optimized using conjugate gradient
method. To avoid being trapped at poor local minima, multiple
initialisations are performed and the hyperparameter set that
maximizes the marginal likelihood is chosen. The computa-
tional cost of inverting M is reduced by adopting Cholesky
decomposition.

C. Active Learning

Active learning is used to select a subset of AIS data that
would serve as a good representation of the entire set and
enable accurate GP regression. It significantly reduces the
computational cost of GP regression by decreasing the size
of the training dataset from n to m where m < n. It is an
iterative process. In each iteration, GP training and regression
is performed and based on the regression outputs, one point
from the available AIS readings is selected to be included in
the training set that would improve GP performance in the
following iteration. The Active Learning cycle is shown in
Figure 3.

The incremental re-training of the GP is made computa-
tionally feasible due to Cholesky Factor Update [15]. The
method exploits the incremental structure of the problem, and
recycles most of the work put into computing the Cholesky de-
composition at the last iteration to produce the new Cholesky
decomposition. This reduces the complexity of each iteration
from O(m3) to O(m2). This means that despite having to
incrementally train the GP, the computational complexity is
still much less than training on the complete training set. In
active learning a learning criterion is used to determine the
selection order. In this paper, three different learning criteria
are compared. The first one is the posterior variance:

criterion1 = var(y∗). (10)



Fig. 3. A visual representation of the Active Learning cycle.

Variance gives information about the uncertainty of prediction
at each location. The goal is to minimize the uncertainty of
prediction, so the location in the set of available points with
the maximum posterior variance is selected and moved with
the corresponding target value to the training set. The second
learning criterion is the distance between the posterior mean
and the actual value.

criterion2 = |y∗ − ȳ∗| (11)

This criterion helps select vessel locations, where regression is
least accurate. The third learning criterion considers both the
posterior mean as well as the posterior variance. Specifically,
we select the next point according to:

criterion3 = |y∗ − ȳ∗| ·
√
var(y∗) (12)

The active learning approach employed here could easily be
extended to allow an online update of the training set. Initially,
the set would be created through the active learning scheme
and available AIS data. Later, as new AIS data arrives, the
points in the set could be exchanged for new points, if they
were more informative for training. This means the size of the
training set would remain unchanged. This could be achieved
by a principled ‘windowing’ of data, which removes the least
informative data points from the training set [15].

D. Anomaly Detection

It is assumed that the data from the AIS dataset repre-
sents normal behaviour. Anomalous behaviour is therefore
artificially generated in this work by taking an actual vessel
information from AIS database and moving the vessel to a
new position, i.e. its speed and heading remain unaffected
but its position changes. This type of anomaly could be
characteristic of AIS spoofing. AIS spoofing is the false
reporting of the ship’s real AIS transmission and could be
an indication of the ship’s involvement in illegal activities.
Direction of vessel movement is chosen from a uniform
random distribution. Distance of movement is expressed in
degrees of latitude/longitude and is drawn from a Gaussian

Fig. 4. A ROC curve for the classification of anomalous cargo ship
behaviours using the GP regression model. The point on the ROC curve rep-
resenting the optimal threshold (assuming uniform cost of misclassification)
is indicted.

distribution with chosen parameters µs and σs (spoofing
parameters). Anomaly is detected based on a local anomaly
score, which measures the deviation of the actual observation
from the predictive distribution at each vessel position. Two
anomaly scores are used in this work. The first score is the
squared residual between the actual observation and the mean
prediction at the given position. The squared residual does not
take predictive uncertainty (variance) into account. The second
anomaly score is the predictive log-likelihood and does take
into account the variance. The likelihood score is given by:

score =
1

2
log(2πσ∗2) +

(y∗ − ȳ∗)2

2σ∗2
, (13)

where predictive variance σ∗2 = var(y∗). To formulate a
global anomaly score, we compute the sum of scores cal-
culated for each velocity component, that is scoreglobal =
scoreyi + scoreyj .

III. RESULTS

A. GP Regression

2000 training points for a given vessel type were chosen ran-
domly from the AIS database of ships around the UK. A sepa-
rate test set was created, with 1000 points representing normal
behaviour, taken directly from AIS database, and 1000 points
that simulate AIS spoofing with spoofing parameters µs = 4
and σs = 1. Figure 4 shows accuracy of classification of the
unlabelled test set for different threshold values. Probabilistic
log-likelihood has the greatest area under the ROC curve, so
it is used to establish the optimal threshold value for anomaly
detection assuming a uniform cost of misclassification. Figure
5 shows where the cases of misclassifications most often
occur. The classification accuracy in Figure 5 is very good
in regions where there is no actual AIS training data, i.e.
outside of standard shipping lanes. However, in regions where



Fig. 5. Classification of test points around the UK using the GP model
trained on cargo vessels.

Fig. 6. Proportion of simulating AIS spoofing anomalies which are not
detected as a function of their displacement. It can be seen that the greater
the AIS mesurements are displaced the more likely they are to be identified
as anomalies.

both “normal” data points and anomalies can be found, there
are cases of misclassification. It occurs when a data point is
moved (during the process of artificially generating anomalies)
in any direction by an amount very close to zero. This is
because although it is not the true behaviour it is still a normal
behaviour for its new position and that is how it is classified
by the anomaly detector. For example if a vessel reported that
it was further along a shipping lane than it actually was, then
this type of anomaly would not be detected. Figure 6 shows
how the fraction of misclassified ships change as distance of
displacement increases.

B. GP regression with active learning

This section describes the results of experiments with differ-
ent active learning criteria. For the following experiments we
choose an initial training set of 50 points and add more points
through the Active Learning scheme with different learning

Fig. 7. Box plots of accuracy of classification as the size of the training set
is iteratively increased using the given criterion (a) variance (criterion 1), (b)
residuals (criterion 2), and (c) combined variance and residuals (criterion 3).
The results shown are taken over 30 independant runs.

criteria. The accuracy of anomaly detection is tested as the
size of the training set increases using a labelled validation
set. The results are shown in Figure 7. For all the criteria,
the accuracy of anomaly detection converges to approximately
80% when all data points are in the training set. When the
learning criterion is variance (Criterion1), accuracy of anomaly



Fig. 8. A comparison of mean accuracy of anomaly detection as the training
set size is increased using active learning vs. random sampling.

detection increases steadily and much more rapidly than with
the other criteria. Therefore, if we wanted to stop the active
learning process earlier to improve efficiency, variance would
produce better results. The reason for this is that Criterion2
and Criterion3 take into account the distance between the
posterior mean and the actual value. This means that they
start by adding the most unusual behaviours to the training
set first. This might potentially help for regression as it tries
to add the examples which are furthest away from prediction.
However, it is less useful for anomaly detection where we
are trying to model “normal” behaviour, as adding the most
unusual behaviors has the effect of increasing the predicted
variance. When the learning criterion is variance, there is no
emphasis on collecting data outliers; instead the aim is to cover
the input space as well as possible by adding points from the
least explored regions first. This also means that the samples
are made independantly of the predictive error and therefore
gives a more accurate representation of the true data variance.
As expected, it is much more effective to select a training
set through Active Learning (with Criterion1) than to select
the set randomly. It is shown in Figure 8, where the size of
the training set was gradually increased until 70% of all data
points were in the training set and the accuracy of anomaly
detection for a labelled reference set was measured as Area
under ROC Curve (AUROC). The plot shows the mean result
of 30 independent runs.

As a last remark, we note that the accuracy of anomaly
detection increases more rapidly if the size of the available AIS
dataset that could be included in the training set is bigger. This
results from the fact that the active learning process has more
points to choose from and can make more optimal decisions
when selecting new points to add to the training set.

C. Case Studies

Finally, we present the proposed anomaly detection scheme
applied to a couple of case studies, one artificial and the
other from real vessel data. The artificial scenario focusses
on AIS data near Southend-on-Sea situated by the Thames
confluence. The test trajectory for a tanker is shown in Figure

Fig. 9. Anomaly detection using training data comprised of (a) all AIS data,
and (b) AIS data for tankers only, near Southend-on-Sea. The empty cirlces
represent the locations of the vessels used for training while the filled circles
represent the generated test points; the corresponding fill colour indicated the
level of abnormality as detected by the GP.

9 as dots, whose colours indicate their anomaly scores. The
tanker starts its journey in the river Thames and moves east
along the river until it reaches the open sea, then it speeds up
and heads north. Once it reaches a shipping lane, it turns south-
west and sails back to the Thames confluence. The circles
represent real AIS data for vessels moving along the river
and the sea nearby. The vessels move along well-established
lanes which are vessel type specific. This can be noticed when
comparing Figure 9(a), which shows all AIS data, and Figure 9
(b), which shows tankers only. Tankers do not normally move
along the shipping lane in the south-west direction towards the
river confluence, therefore, such behaviour of the test tanker
is detected as anomalous (increased anomaly score) for GP
trained on tanker data only, as in Figure 9(b).

The anomaly scores can be used to establish anomaly
threshold for the best trade-off between sensitivity and speci-
ficity depending on the application.

The second case study was located around Cowes, Isle of



Wight using data gathered by BAE Systems for a campaign
aimed at developing tracking techniques for difficult maritime
targets. The data was collected on 2012-10-11 and 2012-10-12
and the effort was concentrated on gathering Radar and EO
sensor measurements of small, fast boats. Most of the targets in
the data gathering exercise were targets-of-opportunity. How-
ever, to introduce some ground truth, Rigid-Hulled Inflatable
Vehicles (RHIBs) were equipped with GPS data loggers and
tasked to perform both ‘normal’ and ‘abnormal’ activities
within the sensors’ field-of-regard. The GPS data loggers give
position, heading and speed, as well as identity, with 10 second
time resolution. It was this GPS data from the RHIBs that was
used in this case study as the target tracking problem is beyond
the scope of this work. However, with an appropriate tracking
solution, this case study demonstrates that our approach would
be applicable to this type of data. The normal data to train
the GP model was taken from North-East/South-West Channel
runs from both days of the campaign and is indicated in Figure
10 by circles. Three tracks of ‘unusual’ behaviour was used
as test data. The three test tracks correspond to:

1) (Figure 10a) A vessel heading north approaching a
departing AIS-enabled vessel and loitering in its wake.
Initially, it is moving very slowly waiting for the AIS-
enabled vessel to depart, then it speeds up trying to
approach the vessel. This behaviour represents drug
smuggling where the AIS-enabled vessel is some cargo
ship or other big vessel that moves slowly and drops
some packages into the sea. The packages are then
collected by the vessel following behind.

2) (Figure 10b) A vessel that during a NE/SW Channel run
breaks off to head to shore, before returning to it’s orig-
inal path. This behaviour indicates people smuggling,
i.e. a vessel follows a normal track, then speeds to the
shore to pick up some people and quickly returns to its
original path.

3) (Figure 10c) A vessel that heads at high speed towards
a car ferry, then goes around the ferry and heads south.
This is a terrorist scenario. The vessel follows a normal
track, then starts speeding towards the ferry to drop
some explosives. After dropping the explosives, it speeds
towards the shore.

The results of these 3 scenarios are shown in Figure 10, where
the colour of the test points represents the level of abnormality
detected using the model. It can be seen that the model picks
out the most unusual parts of the track. This GP approach to
anomaly detection only considers the behaviour of a vessel at a
given instant. In order to apply this model to detect anomalous
tracks the scores can be aggregated for all the points in the
track by taking the sum of the log likelihood. This approach
was applied to this case study using 22 of the normal tracks
along with 22 ‘abnormal’ tracks which were variations on the
scenarios descrbed above. The results of this experiment are
given in Figure 11 in the form of a ROC curve, where the
area under the ROC curve is 0.8678.

Fig. 10. Detecting anomalies in ‘unusual’ tracks around the Isle of Wight
representing different behaviours (a) drug smuggling, (b) people smuggling,
and (c) terrorism

IV. CONCLUSION

This paper has demonstrated Gaussian Processes being used
for maritime anomaly detection. Combined with Active Learn-
ing, to enable the selection of a reduced training set, Gaussian
Processes can be applied to large AIS datasets for accurate
anomaly detection. Its accuracy is further increased by the
proposed data pre-processing stage. Further work could focus
on extending these techniques for online anomaly detection,
where models of normality are updated as new data arrives.



Fig. 11. A ROC curve for the classification of anomalous tracks using
aggregated scores from the GP regression model. The point on the ROC curve
representing the optimal threshold (assuming uniform cost of misclassifica-
tion) is indicted.
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